

Abstracts

Analysis of nonlinear behavior of power HBTs

Woonyun Kim, Sanghoon Kang, Kyungho Lee, Minchul Chung, Jongchan Kang and Bumman Kim. "Analysis of nonlinear behavior of power HBTs." 2002 *Transactions on Microwave Theory and Techniques* 50.7 (Jul. 2002 [T-MTT]): 1714-1722.

To accurately understand the linear characteristics of a heterojunction bipolar transistor (HBT), we developed an analytical nonlinear HBT model using Volterra-series analysis. The model considers four nonlinear components: $r_{\text{sub pi}}$, $C_{\text{sub diff}}$, $C_{\text{sub depl}}$, and $g_{\text{sub m}}$. It shows that nonlinearities of $r_{\text{sub pi}}$ and $C_{\text{sub diff}}$ are almost completely canceled by $g_{\text{sub m}}$ nonlinearity at all frequencies. The residual $g_{\text{sub m}}$ nonlinearity is highly degenerated by input circuit impedances. Therefore, $r_{\text{sub pi}}$, $C_{\text{sub diff}}$, $C_{\text{sub depl}}$, and $g_{\text{sub m}}$ nonlinearities generate less harmonics than $C_{\text{sub bc}}$ nonlinearity. If $C_{\text{sub bc}}$ is linearized, $g_{\text{sub m}}$ is the main nonlinear source of HBT, and $C_{\text{sub depl}}$ becomes very important at a high frequency. The degeneration resistor $R_{\text{sub E}}$ is more effective than $R_{\text{sub B}}$ for reducing $g_{\text{sub m}}$ nonlinearity. This analysis also shows the dependency of the third-order intermodulation (IM3) on the terminations of the source second harmonic impedances. The IM3 of HBT is significantly reduced by setting the second harmonic impedances of $Z_{\text{sub S}}/2 = 0$ and $Z_{\text{sub S}}/2 = 0$.

[Return to main document.](#)

Click on title for a complete paper.